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Pharmaceutical substances are synthetic compounds with very widespread usage due to their therapeutic
biological effects. These compounds and their bioactive metabolites are continually introduced into the
aquatic environment as complex mixtures via sewage treatment plants (incomplete destruction), animal
farms or leaching from landfills. In this study, an analytical procedure involving solid-phase extraction and
gas chromatography–mass spectrometry was developed to determine pharmaceutical compounds (caffeine,
diclofenac, ketoprofen and ibuprofen) in aqueous samples (wastewater and surface water). The results
demonstrated the suitability of the method at trace levels (ng · L−1) for multi-residue analysis of different
types of water matrices.
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1. Introduction

During the last three decades, studies on the impact of chemical pollution have focused almost
exclusively on the conventional ‘priority pollutants’, especially those acutely toxic/carcinogenic
and industrial intermediates displaying persistence in the environment. This spectrum of chemi-
cals, however, is only one piece of the larger puzzle of risk assessment. Another group of bioactive
chemicals, receiving comparatively little attention as potential environmental pollutants, includes
the pharmaceuticals. These compounds and their bioactive metabolites are continually introduced
into the aquatic environment as complex mixtures via sewage treatment plants (STEP) (incomplete
destruction), animal farms or leaching from landfills [1]. They represent a significant environ-
mental risk if one considers on the one hand quantities potentially introduced into the aquatic
environment and that they have been produced to be biologically active. STEPs have proved to be
the main entry points of this contamination into the aquatic environment. Recent studies have docu-
mented the presence of a wide variety of pharmaceuticals in the environment worldwide, including
antibiotics, anaesthetics, anti-inflammatories, antitumour compounds, oestrogens, lipid-reducing
agents, diuretics, antidepressantsand illicit drugs [2–6].
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128 S. Giandomenico et al.

Relatively few studies are available on the occurrence and fate of by-products [7]. By-products
include both metabolites excreted via urine or faeces and transformation products, which can
be formed in the environment from a pharmaceutical substance and/or metabolites, released
under physicochemical and biological condtions, for example, in a wastewater treatment plant
(WWTP). The difference between metabolites and transformation products is not always clear
because reactions may be influenced by human metabolism and biodegradation in the environment
or in treatment plants. Carbamazepine and non-steroidal anti-inflammatory drug derivates (i.e.
hydroxyl- and carboxy-ibuprofen and , 4′- and 5′-hydroxy diclofenac) are the more important
metabolites determined in the environment [8–10].

In this study, the compounds analysed were diclofenac, paracetamol, ketoprofen, ibupro-
fen (non-steroidal anti-inflammatory drugs), a group of the most commonly prescribed drugs
[11,12] and caffeine (a stimulant). Because pharmaceuticals are usually present in envi-
ronmental water samples at trace levels, a pre-concentration technique such as solid-phase
extraction (SPE) is necessary. Materials for SPE typically include the use of an octadecyl
(C18)-bonded silica cartridge [13], graphitised carbon black [14], ethinylbenzene–divinylbenzene
co-polymer [15] and polystyrene–divinylbenzene [16] and co-polymers composed of both
lipophilic and hydrophilic monomers [17]. The selection of an appropriate solid phase is a
difficult, because the recoveries obtained for some compounds can be low. This problem is
more evident in the simultaneous determination of several classes of pharmaceuticals. Follow-
ing sample pre-concentration, the analytical technique for the quantification of pharmaceuticals
can be carried out with gas chromatography coupled to mass spectrometry (GC-MS), although
for acid compounds, it requires an additional step of derivatisation [18]. The most com-
monly used derivatisation reagents are: pentafluorobenzyl bromide [19] and diazomethane [20]
for carboxylic groupa and N ,Obis(trimethylsilyl)trifluoroacetamide [21], N-methyl-N-(tert.-
butyldimethylsilyl)trifluoroacetamide [18] and N−methyl-N-(trimethylsylil) trifluoroacetamide
(MSTFA) [13,22] for hydroxyl and carboxyl functional groups. The purpose of our study was to
present a simple procedure for the simultaneous determination of ibuprofen, paracetamol, caf-
feine, diclofenac and ketoprofen at trace levels (ng · L−1) in environmental samples using SPE
WCX (weak cation exchange) pre-concentration, followed by derivatisation with MSTFA and
GC-MS analysis. In order to evaluate the reliability of the method, it was applied to the analysis
of STEP wastewater, surface water and drinking water.

2. Materials and methods

2.1. Chemicals and reagents

Acetone, ethyl acetate, methanol (HPLC reagent grade) and 37% hydrochloric acid (reagent grade)
were purchased from J.T. Baker. Ultrapure water was obtained using a Milli-Q system (Purelab
Option Q-ELGA). The silylation reagent dichlorodimethylsilane, MSTFA (purity >98%) and
pharmaceutical products (ibuprofen, paracetamol, caffeine, diclofenac and ketoprofen), as well
as pyrene and 1-hydroxypyrene used as internal standards, were purchased from Sigma-Aldrich
(purity >98%). A Whatman GF/F filter was obtained from VWR International. Mecoprop [2-
(4-chloro-2-methylphenoxy)propanoic acid] used as surrogate standard was obtained from Dr
Ehrenstorfer. For SPE, WCX and Oasis HLB cartridges were purchased from Agilent Technology
and Waters, respectively.

2.2. Sample collection and solid-phase extraction

Water samples were collected in July 2010 (Figure 1). The samples were: surface water from
Galeso River (station 1), Battendieri River (station 2) and D’Aiedda Channel, which carried
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Chemistry and Ecology 129

Figure 1. Sampling stations.

wastewater from sewage plants (station 3); surface seawater from Mar Grande basin (station 4)
in an area influenced by urban wastewater; wastewater samples from WWTP effluent (∼100,000
PE (population equivalent)) (station 5) and tap water. Samples were taken using a Teflon Niskin
bottle. After collection, samples were stored in an amber glass bottle and acidified to pH 2.0 with
3.5 M HCl. In the laboratory, samples were filtered on a GF/F filter (0.7 μm) and analysed as soon
as possible, i.e. within 24 h. In addition, for the wastewater, sample was filtered with 0.45 μm
cellulose filters, to eliminate possible clogging of the cartridges.

All glassware was silanised with dichlorodimethylsilane (10% v/v) in toluene to minimise
the adsorption of target compounds on the glass walls. First, the glassware was rinsed with the
silylation reagent, cleaned three times with toluene and three times with acetone and then heated
to 150 ◦C for at least 12 h.

For SPE extraction, 3-mL cartridges packed with 60 mg of WCX sorbent, a co-polymer of
poly(divinylbenzene)-co-N-vinylpyrrolidone containing carboxylic acid groups, was used. SPE
was performed under vacuum using a 12-fold vacuum extraction box (Supelco) at a flow rate of
12–15 mL · min−1. Before extraction loading, the SPE cartridge was conditioned with 3 mL of
ethyl acetate and 3 mL of Milli-Q water at pH 2. The sample extraction volume was generally
1000 mL. After the enrichment phase, the cartridge was dried for 1 h under a vacuum. Analytes
were eluted with 4.5 mL of ethyl acetate and 4.5 mL of ethyl acetate/acetone (1:1), respectively.
The elutes were collected in a silanised glass vial and the volume was reduced under a gently
stream of nitrogen to 100 μL of ethyl acetate. For the derivatisation step, 30 μL of MSTFA was
added to the sample and the reaction was carried out at 65 ◦C for 35 min.

2.3. GC-MS analysis

Analyses were carried out using a gas chromatograph (model 7890, Agilent Technology) coupled
to a mass detector (5975C Agilent Technology). The mass spectrometer was used in the electronic
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130 S. Giandomenico et al.

impact mode (70 eV electron energy) with ion source, quadrupole and transfer line temperatures
of 230, 150 and 280 ◦C, respectively. Injection of 5 μL of sample was performed using the PTV
injector in solvent mode and at the following temperature programme: 50 ◦C (0.5 min) to 250 ◦C
at 600 ◦C · min−1 (10 min), while vent flow was adjusted to 100 mL · min−1. The carrier gas was
ultrapure helium, set at a constant flow mode (1.5 mL · min−1). The chromatographic column
was a PTE-5 (Supelco Inc. Bellefonte), 30 m × 0.32 mm ID × 0.25 μm film thickness. The GC
oven was programmed as follows: 50 ◦C (2 min), set at 10 ◦C · min−1 to 250 ◦C (5 min) and
20 ◦C · min−1 to 280 ◦C (2 min). Mecoprop was added to the sample at the beginning of the
extraction procedure, for recovery calculation, whereas pyrene and 1-hydroxypyrene were used
as internal standards for neutral and acid compounds, respectively, and were added to the sample
prior to the derivatisation step. For the calibration curve, 10 mg of each compound was dissolved in
10 mL of methanol to give a 1000 mg · L−1 stock solution. The diluted solutions were successively
prepared diluting stock solution with ethyl acetate. A series of mixed working standard solutions
were prepared daily in the range 1–500 μg · L−1.

3. Results and discussion

3.1. Optimisation of the derivatisation conditions

Target compounds as diclofenac, paracetamol, ketoprofen and ibuprofen contain hydroxyl and/or
carboxyl groups and have therefore low polarity. Gas chromatographic separation of these com-
pounds can be performed only after derivatisation that converts functional groups into thermally
stable, non-polar groups. Silylation is the most widely used technique and MSTFA represents a
typical reagent for derivatisation of these pharmaceuticals [13,23,24]. Derivatisation involves the
replacement of an acid hydrogen with SiCH3 to form trimethylsilyl (TMS) derivates. For parac-
etamol, the derivatisation reaction is quite complex and leads mainly (>60%) to the formation of
a ditrimethylsilyl-derived compounds.

The reaction forTMS derivates occurs cleanly without artefacts; moreover, because no underiva-
tised compounds were found when analysed by GC-MS, derivatisation was considered complete.
Derivatisation reactions are affected by many possible factors such as time, temperature, solvent
and the concentration of the derivatisation reagent. With respect to reaction temperature and the
amount of derivatisation reagent, 65 ◦C and 30 μL of MSTFA were commonly used [13]. A dif-
ferent reaction time with MSTFA has been reported [24,25]. This variation might be caused by
structural differences in the target compounds. In this study, pharmaceutical mixed solutions were
derivatised for different lengths of time (Figure 2).

0

100000

200000

300000

400000

500000

600000

20 25 30 35 40 45 50 55 60 65

A
bu

nd
an

ce

Time (min)

ibuprofen paracetamol ketoprofen diclofenac

Figure 2. Influence of time on derivatisation reaction of pharmaceutical compounds (mixed standards solution of
100 μg · L–1 of each compound).
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Figure 3. Influence of solvent on derivatisation reaction of pharmaceutical compounds (mixed standards solution of
100 μg · L–1 of each compound).
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Figure 4. Chromatogram in SIM mode of selected compounds (1. ibuprofen; 2. paracetamol; 3. caffeine; 4. pyrene;
5. ketoprofen; 6. diclofenac; 7. Idroxypyrene).

The results showed that the optimum time for derivatisation was 35 min. Different solvents have
been used for derivatisation in the literature [24,25]; in this study, toluene, ethyl acetate and no
solvent (dry condition) were tested to determine the suitable reaction medium. The results reported
in Figure 3 show that ethyl acetate was the most suitable solvent for MSTFA derivatisation, whereas
when the reaction was carried out without solvent (dry condition) the amounts of derivatised
products were very low.

A typical chromatogram of the TMS derivates of the selected pharmaceuticals and internal
standard compounds is showed in Figure 4.

The mass spectrum of each compound was characterised in full-scan mode and the selected
ion mode was used for all quantitative measurements. Typical m/z ratios for quantitative and
qualitative analysis and the analytical detection limit are shown in Table 1.
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132 S. Giandomenico et al.

Table 1. Molecular weight, molecular weight of trimethylsilyl derivates, quantification and qualification ions of
pharmaceutical compounds and analytical limits of detection.

Analytical
Quantification Qualification LOD · pg−1

Analyte Mx Mx-TMS ion (m/z) ion (m/z) injected

Ibuprofen 206 278 160 117; 263 8.5
Paracetamol 151 295a 206 280; 295 2.5
Caffeine 194 – 194 109; 193 12.5
Ketoprofen 254 326 282 105; 311 17.5
Diclofenac 295 367 214 242; 367 12.1

Note: aParacetamol di-TMS. LOD, limits of detection; Mx, molecular weight; Mx-TMS, molecular weight of trimethylsilyl derivates; TMS
trimethylsilyl derivative.

The linearity of the calibration curves was tested using a standard mixture in ethyl acetate at
different concentrations of 1–500 μg · L−1. Depending on the compound, the correlation coef-
ficient ranged from 0.988 (for ketoprofen) to 0.999 (for caffeine). Repeatability expressed as a
coefficient of variation was in the range 4–12%.

3.2. Optimisation of the extraction conditions

The SPE were effected using a WCX cartridge. In recent years, SPE technology has expanded
to offer the use of mixed-mode, polymeric ion-exchange media, which combine the attributes
of reversed-phase chemistry and ion-exchange interactions into a single material. Mixed-mode
ion-exchange sorbents are designed to interact with ionic species, but they can also retain non-
charged species effectively through hydrophobic or hydrophilic interactions. The WCX sorbent
is a mixed-mode weak cation-exchange and reversed-phase sorbent resin [i.e. a co-polymer of
poly(divinylbenzene)-co-N-vinylpyrrolidone] containing carboxylic acid groups. These sorbents
combine a polar monomer, which promotes hydrophilic interactions, and a cross-linking monomer,
which helps to increase the specific surface area and enhance lipophilic interactions. The SPE
step was optimised by studying several conditions and each test was performed in triplicate for
calculation of RSD (relative standard deviation) values. Because of the different acid properties of
the selected compounds, the best extraction pH was determined experimentally. One litre of Milli-
Q water was spiked with a mixture of standard in methanol to obtained a solution of 20 ng · L−1

and extracted at pH 2.0, 3.5 and 7.0.
Interpretation of the extraction recoveries is quite complex for the different structures of the

compounds and the absorption phase. The pH affects both the exchange capacity of the sorbent and
the ionisation of the compounds, especially those with an acidic character. Paracetamol and caf-
feine do not have carboxylic groups. Moreover, extraction recovery also depends on hydrophobic
interactions and therefore differs between compounds that have different lipophilicity and water
solubility.

As showed in Figure 5, with the exception of paracetamol, extraction recovery at pH 2.0 was
better for most of the target compounds and ranged from 82% for ibuprofen to 122% for diclofenac.
Extraction recovery of paracetamol was very low at all pH values (14–22%). The reason for this
is still unclear and paracetamol has therefore not been determined in real samples.

WCX sorbent was then compared with Oasis HLB sorbent, containing a polymeric water-
wettable reversed-phase sorbent, which has been widely used for the extraction of acid drugs.
The results obtained, and shown in Figure 6, showed that at pH 2.0 the extraction was more
or less similar for the acid compounds, particularly for ibuprofen. For neutral compounds, such
as caffeine, the HLB phase did not achieve recoveries >50% with eluents such as ethyl acetate
and/or acetone [13]. The best recoveries using this phase were obtained by Weigel et al. [16] using
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Figure 5. Extraction recovery obtained at different pH of the spiked Milli-Q water (20 ng · L–1 for each compound).
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Figure 6. Comparison between different solid-phase extraction sorbents of the spiked Milli-Q water (20 ng · L–1 for
each compound).

methanol as the eluent and larger volumes. The WCX cartridge achieves satisfactory recoveries
(82%) for caffeine also.

3.3. Recovery of analysis of real samples

Relative recoveries of pharmaceuticals were determined by analysing mineral water spiked with
20 ng · L−1 of each compound. Typical recoveries ranged from 80% for ibuprofen to 125% for
diclofenac, while the RSD values were <20% for all compounds examined. The limits of detection
of individuals compounds were calculated as three times the standard deviation of blank and varied
according to the properties of compounds and water samples. They vary between 0.8 ng · L−1

(caffeine) and 2.8 ng · L−1 (ketoprofen). These values enable use of this method to determine
pharmaceutical products in natural waters which were found generally at ng · L−1 levels [13,26–
28]. Levels of the pharmaceutical compounds determined in this study are reported in Table 2.
Caffeine was found in all samples, except in the Battendieri River water, with values from not
determinable to 10.2 ng · L−1; because of its almost ubiquitous presence, caffeine can be used
as a chemical marker for surface water pollution by domestic wastewater [29]; diclofenac and
ketoprofen, by contrast, were absent in all natural samples.

The sample from d’Aiedda Channel, which also collects effluent arising from treatment plant
wastewater relative to the smaller municipalities of the province of Taranto, showed not deter-
minable values. The absence of drugs in these waters may be due to a dilution effect that occurs
along the canal, largely as a result of rain.
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134 S. Giandomenico et al.

Table 2. Concentration (ng · L−1) of selected pharmaceuticals in water samples.

Sampling station

Analyte 1 2 3 4 5 Tap water

Ibuprofen 3.0 ± 0.3 n.d. n.d n.d 235.2 ± 37.6 1.5 ± 0.2
Caffeine 10.2 ± 1.2 n.d. 5.2 ± 0.8 2.0 ± 0.3 60.1 ± 8.4 6.0 ± 0.7
Ketoprofen n. d. n.d. n.d n.d. 589.3 ± 94.2 n.d.
Diclofenac n. d. n.d. n.d n.d. 983.3 ± 177.0 n.d.

Note: n.d., not detected. ± SD (standard deviation, n = 3).

Table 3. Concentration of selected pharmaceuticals detected in (a) European surface water and tap water (in bold) and
(b) wastewater treatment plant effluent.

Concentration (ng · L−1)

Site Ref Ibuprofen Caffeine Diclofenac Ketoprofen

(a)
France [30] n.d. to 5 13–107 1–33a n.d. to 15

n.d. to 1 n.d. to 23 n.d. to 3 n.d. to 3
France [13] 8–176 56–91 n.d. 4–10
Slovenia [24] n.d. – n. d. to 282 n.d.

n.d – n.d n.d
Germany [16] 5–32 98–176 26–67 n.d.
Germany [35] – – 35a –
Germany [34] 3a – 6a –
Hungary [31] 13–109 85–440 n.d. to 141 n.d
Finland [33] 9a – – 8a

Italy [6] 13–20a – – –
Sweden [36] 13–97 – 25–170 10–163
United Kingdom [23] 349–846 n.d. n.d. n.d.

(b)
France [30] 18–219 255–2213 211 – 486 22–1081
France [13] 37–70 114–684 – 149–337
Germany [32] 370a – 810a 200a

Hungary [31] n.d. to 600 n.d. to 1550 1950 – 3650 n.d. to 1390
Italy [5] 73a – 2466a n.d.
Sweden [36] 31–191 – 174 – 1852 174 – 556
United Kingdom [23] 250–385 – – –

Note: aAverage concentrations; n.d.: not detected.

In wastewater samples from WWTP effluent, drug concentrations were significant, with a
median value that ranged from 60.1 ng · L−1 for caffeine to 983 ng · L−1 for diclofenac.

Table 3 reports the values for ibuprofen, caffeine, diclofenac and ketoprofen in natural waters,
tap waters and STEP effluents for some other European countries [30–36]. The data reported
in this study are generally lower (natural and tap water) or comparable with (wastewater) the
literature data. In particular, the higher concentrations of pharmaceuticals in wastewater confirm
that WWTPs are the main source of these compounds in aquatic environment and that removal
of these drugs from water treatment plants is not entirely effective.

4. Conclusions

The developed method applied to analysis of aqueous samples containing the selected pharma-
ceuticals is accurate, sensitive and reliable, with the exception of paracetamol. WCX sorbent is an
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Chemistry and Ecology 135

innovative phase for the simultaneous extraction of acid and neutral pharmaceutical compounds
from environmental samples. This method proved to be quite fast and inexpensive. Further
investigation to better characterised pharmaceutical compounds in environmental waters, and
also in biota and sediment, is recommended. Actually, risk assessment does not indicate toxic
risk, especially for human exposure [37,38]. For aquatic organism exposure, further research
advances are needed before a real risk assessment can be made. The amounts of drugs in rivers,
and especially streams, are several magnitudes lower than those applied in medicine; but it cannot
be ruled out that the number of drugs present in waters have adverse effects on aquatic organisms.
With these low environmental concentrations, the toxic effects may be chronic rather than acute
[32]. Moreover, regarding the by-products of pharmaceutical compounds, their toxicity and the
potential impact for aquatic ecosystems and human health cannot excluded, therefore, the degra-
dation routes, and the occurrence and fate of these compounds in aquatic systems must be also
investigated for better ecotoxicological risk assessment.
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